Using optimized neon functions
This sketch shows how to use the mathneon library which provides optimized implementation of many simple math functions. The code is based on the sinetone/render.cpp project, with the following differences:
- we include libraries/math_neon/math_neon.h instead of cmath
- we call sinf_neon() instead of sinf()
- we can therefore have many more oscillators than in the basic project (just about 90) and we are using them for a weird additive synth
#include <libraries/math_neon/math_neon.h>
#include <stdlib.h>
#include <time.h>
#define NUM_OSCS 40
float gPhaseIncrement;
float gFrequencies[NUM_OSCS];
float gPhases[NUM_OSCS];
float gFrequenciesLFO[NUM_OSCS];
float gPhasesLFO[NUM_OSCS];
float gScale;
{
gScale = 1 / (float)NUM_OSCS * 0.5;
srand (time(NULL));
for(int k = 0; k < NUM_OSCS; ++k){
gFrequencies[k] = rand() / (float)RAND_MAX * 2400 + 300;
gFrequenciesLFO[k] = rand() / (float)RAND_MAX * 0.05 + 0.001;
gPhasesLFO[k] = 0;
}
return true;
}
{
for(
unsigned int n = 0; n < context->
audioFrames; n++) {
float out[2] = {0};
for(int k = 0; k < NUM_OSCS; ++k){
float LFO = sinf_neon(gPhasesLFO[k]);
gPhasesLFO[k] += gFrequenciesLFO[k] * gPhaseIncrement;
if(gPhasesLFO[k] > M_PI)
gPhasesLFO[k] -= 2.0f * (float)M_PI;
out[k&1] += sinf_neon(gPhases[k]) * gScale * (LFO*LFO);
gPhases[k] += gFrequencies[k] * gPhaseIncrement;
if(gPhases[k] > M_PI)
gPhases[k] -= 2.0f * (float)M_PI;
}
}
}
{
}